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18Models for Nonideal
Reactors

Success is a journey, not a destination.
—Ben Sweetland

Use the RTD to
evaluate

parameters.

Overview.  Not all tank reactors are perfectly mixed nor do all tubular reac-
tors exhibit plug-flow behavior. In these situations, some means must be
used to allow for deviations from ideal behavior. Chapter 17 showed how
the RTD was sufficient if the reaction was first order or if the fluid was
either in a state of complete segregation or maximum mixedness. We use
the segregation and maximum mixedness models to bound the conversion
when no adjustable parameters are used. For non-first-order reactions in a
fluid with good micromixing, more than just the RTD is needed. These sit-
uations compose a number of reactor analysis problems and cannot be
ignored. For example, we may have an existing reactor in storage and want
to carry out a new reaction in that reactor. To predict conversions and prod-
uct distributions for such systems, a model of reactor flow patterns and/or
RTD is necessary.

After completing this chapter you will be able to
• Discuss guidelines for developing one- and two-parameter models

(Section 18.1).
• Use the tanks-in-series (T-I-S) one-parameter model to predict con-

version (Section 18.2).
• Use the dispersion one-parameter model to predict conversion

(Section 18.3).
• Use the RTD to evaluate the model parameters (e.g., Da, n) for

one-parameter models.
• Develop equations to model flow, dispersion, and reaction (Section

18.4).
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18.1 Some Guidelines for Developing Models

The overall goal is to use the following equation

The choice of the particular model to be used depends largely on the engineer-
ing judgment of the person carrying out the analysis. It is this person’s job to
choose the model that best combines the conflicting goals of mathematical
simplicity and physical realism. There is a certain amount of art in the devel-
opment of a model for a particular reactor, and the examples presented here
can only point toward a direction that an engineer’s thinking might follow.

For a given real reactor, it is not uncommon to use all the models dis-
cussed previously to predict conversion and then make comparisons. Usually,
the real conversion will be bounded by the model calculations.

The following guidelines are suggested when developing models for non-
ideal reactors:

1. The model must be mathematically tractable. The equations used to
describe a chemical reactor should be able to be solved without an
inordinate expenditure of human or computer time.

2. The model must realistically describe the characteristics of the non-
ideal reactor. The phenomena occurring in the nonideal reactor must
be reasonably described physically, chemically, and mathematically.

3. The model should not have more than two adjustable parameters.
This constraint is often used because an expression with more than
two adjustable parameters can be fitted to a great variety of experi-
mental data, and the modeling process in this circumstance is nothing
more than an exercise in curve fitting. The statement “Give me four
adjustable parameters and I can fit an elephant; give me five and I can
include his tail!” is one that I have heard from many colleagues.
Unless one is into modern art, a substantially larger number of adjust-
able parameters is necessary to draw a reasonable-looking elephant.1

A one-parameter model is, of course, superior to a two-parameter
model if the one-parameter model is sufficiently realistic. To be fair,
however, in complex systems (e.g., internal diffusion and conduction,

1 J. Wei, CHEMTECH, 5, 128 (1975).

• Discuss dispersion and reaction in tubular reactors (Section 18.6).
• Suggest combinations of ideal reactors to model the nonideal reac-

tor to predict conversion (Section 18.7).
• Use RTD data to evaluate the model parameters (e.g., �, �) for

two-parameter models (Section 18.8).

Using the above models, we will first measure the RTD to characterize the
reactor at the new operating conditions of temperature and flow rate. After
selecting a model for the reactor, we use the RTD to evaluate the parame-
ter(s) in the model after which we calculate the conversion.

RTD Data + Model + Kinetics = Prediction

Conflicting goals

A Model must
• Fit the data
• Be able to 

extrapolate 
theory and 
experiment

• Have realistic 
parameters
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mass transfer limitations) where other parameters may be measured
independently, then more than two parameters are quite acceptable.

Table 18-1 gives some guidelines that will help your analysis and model build-
ing of nonideal reaction systems.

When using the algorithm in Table 18-1, we classify a model as being either a
one-parameter model (e.g., tanks-in-series model or dispersion model) or a
two-parameter model (e.g., reactor with bypassing and dead volume). In Sec-
tions 18.1.1 and 18.1.2, we give an overview of these models, which will be
discussed in greater detail later in the chapter. 

18.1.1 One-Parameter Models

Here, we use a single parameter to account for the nonideality of our reactor.
This parameter is most always evaluated by analyzing the RTD determined
from a tracer test. Examples of one-parameter models for nonideal CSTRs
include either a reactor dead volume, VD, where no reaction takes place, or vol-
umetric flow rate with part of the fluid bypassing the reactor, vb, thereby exit-
ing unreacted. Examples of one-parameter models for tubular reactors include
the tanks-in-series model and the dispersion model. For the tanks-in-series
model, the one parameter is the number of tanks, n, and for the dispersion
model, the one parameter is the dispersion coefficient, Da.† Knowing the
parameter values, we then proceed to determine the conversion and/or effluent
concentrations for the reactor.

TABLE 18-1  A PROCEDURE FOR CHOOSING A MODEL

TO PREDICT THE OUTLET CONCENTRATION AND CONVERSION

1. Look at the reactor.
a. Where are the inlet and outlet streams to and from the reactors? (Is

by-passing a possibility?)
b. Look at the mixing system. How many impellers are there? (Could there be 

multiple mixing zones in the reactor?)
c. Look at the configuration. (Is internal recirculation possible? Is the packing of 

the catalyst particles loose so channeling could occur?)
2. Look at the tracer data.

a. Plot the E(t) and F(t) curves.
b. Plot and analyze the shapes of the E(Θ) and F(Θ) curves. Is the shape of the 

curve such that the curve or parts of the curve can be fit by an ideal reactor 
model? Does the curve have a long tail suggesting a stagnant zone? Does the 
curve have an early spike indicating bypassing?

c. Calculate the mean residence time, tm, and variance, σ 2. How does the tm 
determined from the RTD data compare with τ as measured with a yardstick 
and flow meter? How large is the variance; is it larger or smaller than τ 2?

3. Choose a model or perhaps two or three models.
4. Use the tracer data to determine the model parameters (e.g., n, Da, vb).
5. Use the CRE algorithm in Chapter 5. Calculate the exit concentrations and conver-

sion for the model system you have selected.

† Nomenclature note: Da1 (or Da2) is the Damköhler number and Da is the dispersion
coefficient.

The Guidelines
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We first consider nonideal tubular reactors. Tubular reactors may be
empty, or they may be packed with some material that acts as a catalyst,
heat-transfer medium, or means of promoting interphase contact. Until Chap-
ters 16–18, it usually has been assumed that the fluid moves through the reactor
in a piston-like flow (i.e., plug flow reactor), and every atom spends an identical
length of time in the reaction environment. Here, the velocity profile is flat, and
there is no axial mixing. Both of these assumptions are false to some extent in
every tubular reactor; frequently, they are sufficiently false to warrant some
modification. Most popular tubular reactor models need to have the means to
allow for failure of the plug-flow model and insignificant axial mixing assump-
tions; examples include the unpacked laminar-flow tubular reactor, the
unpacked turbulent flow reactor, and packed-bed reactors. One of two
approaches is usually taken to compensate for failure of either or both of the
ideal assumptions. One approach involves modeling the nonideal tubular reac-
tor as a series of identically sized CSTRs. The other approach (the dispersion
model) involves a modification of the ideal reactor by imposing axial dispersion
on plug flow.

18.1.2 Two-Parameter Models

The premise for the two-parameter model is that we can use a combination of
ideal reactors to model the real reactor. For example, consider a packed bed
reactor with channeling. Here, the response to a pulse tracer input would show
two dispersed pulses in the output as shown in Figure 16-1 and Figure 18-1.

Here, we could model the real reactor as two ideal PBRs in parallel, with the
two parameters being the volumetric flow rate that channels or by passes, ,
and the reactor dead volume, V

D
. The real reactor volume is V = V

D
 + V

S
 with

entering volumetric flow rate  =  + .

18.2 The Tanks-in-Series (T-I-S) One-Parameter 
Model

In this section we discuss the use of the tanks-in-series (T-I-S) model to
describe nonideal reactors and calculate conversion. The T-I-S model is a
one-parameter model. We will analyze the RTD to determine the number of
ideal tanks, n, in series that will give approximately the same RTD as the non-
ideal reactor. Next, we will apply the reaction engineering algorithm developed
in Chapters 1 through 5 to calculate conversion. We are first going to develop
the RTD equation for three tanks in series (Figure 18-2) and then generalize to

Nonideal tubular
reactors

t

Channeling

C(t)
VS

VD

(a) (b) (c)

Dead zones
z = 0 z = L

vS

v

v
v

Figure 18-1 (a) Real system; (b) outlet for a pulse input; (c) model system.
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v0 vb vS

n = ?



Section 18.2 The Tanks-in-Series (T-I-S) One-Parameter Model 849

n reactors in series to derive an equation that gives the number of tanks in
series that best fits the RTD data.

18.2.1 Developing the E-Curve for the T-I-S Model

The RTD will be analyzed from a tracer pulse injected into the first reactor of
three equally sized CSTRs in series. 

Using the definition of the RTD presented in Section 16.2, the fraction of
material leaving the system of three reactors (i.e., leaving the third reactor) that
has been in the system between time t and t � �t is

E(t) �t � 

Then

E(t) � (18-1)

In this expression, C3(t) is the concentration of tracer in the effluent from the
third reactor and the other terms are as defined previously.

By carrying out mass balances on the tracer sequentially for reactors 1,
2, and 3, it is shown on the CRE Web site in the Expanded Material for
Chapter 18 that the exit tracer concentration for reactor 3 is 

(18-2)

Substituting Equation (18-2) into Equation (18-1), we find that

E(t) �

� (18-3)

In Figure 2-9, we
saw how tanks in

series could approxi-
mate a PFR.

Pulse

Pulse

1

2

3

(b)(a)

Figure 18-2 Tanks in series: (a) real system; (b) model system.
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Generalizing this method to a series of n CSTRs gives the RTD for n
CSTRs in series, E(t):

(18-4)

Equation (18-4) will be a bit more useful if we put in the dimensionless form
in terms of E(�). Because the total reactor volume is nVi , then τi � τ /n, where
τ represents the total reactor volume divided by the flow rate, , we have

E(�) � τE(t) = e�n� (18-5)

where � � t/τ � Number of reactor volumes of fluid that have passed through
the reactor after time t. 

Here, (E(�) d�) is the fraction of material existing between dimension-
less time � and time (� � d�). 

Figure 18-3 illustrates the RTDs of various numbers of CSTRs in series
in a two-dimensional plot (a) and in a three-dimensional plot (b). As the num-
ber becomes very large, the behavior of the system approaches that of a
plug-flow reactor.

We can determine the number of tanks in series by calculating the
dimensionless variance  from a tracer experiment.

 � (� � 1)2E(�) d� (18-6)

� �2E(�) d� � 2 �E(�) d� � E(�) d� (18-7)

 � �2E(�) d� � 1 (18-8)

RTD for equal-size
tanks in series E t( ) t n�1

n 1�( )!τi
n

------------------------ e�t τ i�
�

v

n n�( )n�1

n 1�( )!
-----------------------

1.4
n=10

n=
∞

n=4
n=2

1.2

1

0.8

0.6

0.4

0.2
0

0 1 2

(a) (b)

3

5
10

15

0

E

1
2

3
4

0.5

1

1.5

n

Figure 18-3 Tanks-in-series response to a pulse tracer input for different numbers of tanks.
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� �2 e�n� d� � 1

 � �n�1e�n� d� � 1 (18-9)

�

 � (18-10)

The number of tanks in series is

(18-11)

This expression represents the number of tanks necessary to model the real
reactor as n ideal tanks in series. If the number of reactors, n, turns out to be
small, the reactor characteristics turn out to be those of a single CSTR or
perhaps two CSTRs in series. At the other extreme, when n turns out to be
large, we recall from Chapter 2 that the reactor characteristics approach
those of a PFR.

18.2.2 Calculating Conversion for the T-I-S Model

If the reaction is first order, we can use Equation (5-15) to calculate the con-
version

X � 1 � (5-15)

where

τi � 

It is acceptable (and usual) for the value of n calculated from Equation (18-11)
to be a noninteger in Equation (5-15) to calculate the conversion. For reactions
other than first order, an integer number of reactors must be used and sequen-
tial mole balances on each reactor must be carried out. If, for example,
n = 2.53, then one could calculate the conversion for two tanks and also for
three tanks to bound the conversion. The conversion and effluent concentra-
tions would be solved sequentially using the algorithm developed in Chapter 5;
that is, after solving for the effluent from the first tank, it would be used as the
input to the second tank and so on as shown on the CRE Web site for
Chapter 18 Expanded Materials. 
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18.2.3 Tanks-in-Series versus Segregation for a First-Order Reaction

We have already stated that the segregation and maximum mixedness models
are equivalent for a first-order reaction. The proof of this statement was left as
an exercise in Problem P17-3B. We can extend this equivalency for a first-order
reaction to the tanks-in-series (T-I-S) model

XT-I-S = Xseg = Xmm (18-12)

The proof of Equation (18-12) is given in the Expanded Materials on the CRE
Web site for Chapter 18. 

18.3 Dispersion One-Parameter Model

The dispersion model is also often used to describe nonideal tubular reactors. In
this model, there is an axial dispersion of the material, which is governed by an
analogy to Fick’s law of diffusion, superimposed on the flow as shown in Figure
18-4. So in addition to transport by bulk flow, UAcC, every component in the
mixture is transported through any cross section of the reactor at a rate equal to
[–DaAc(dC/dz)] resulting from molecular and convective diffusion. By convec-
tive diffusion (i.e., dispersion), we mean either Aris-Taylor dispersion in
laminar-flow reactors or turbulent diffusion resulting from turbulent eddies.
Radial concentration profiles for plug flow (a) and a representative axial and
radial profile for dispersive flow (b) are shown in Figure 18-4. Some molecules
will diffuse forward ahead of the molar average velocity, while others will lag
behind. 

To illustrate how dispersion affects the concentration profile in a tubular
reactor, we consider the injection of a perfect tracer pulse. Figure 18-5 shows
how dispersion causes the pulse to broaden as it moves down the reactor and
becomes less concentrated.

Recall Equation (14-14). The molar flow rate of tracer (FT) by both con-
vection and dispersion is

(14-14)

In this expression, Da is the effective dispersion coefficient (m2/s) and U (m/s)
is the superficial velocity. To better understand how the pulse broadens, we
refer to the concentration peaks t2 and t3 in Figure 18-6. We see that there is a
concentration gradient on both sides of the peak causing molecules to diffuse

Plug Flow Dispersion

Z ZZ = 0Z = 0

Figure 18-4 Concentration profiles: (a) without and (b) with dispersion.

Tracer pulse with
dispersion

FT Da 
�CT

�z
---------� UCT� A c�
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away from the peak and thus broaden the pulse. The pulse broadens as it
moves through the reactor. 

Correlations for the dispersion coefficients in both liquid and gas systems
may be found in Levenspiel.2 Some of these correlations are given in Section
18.4.5.

An unsteady state mole balance on the inert tracer T gives

(18-13)

Substituting for FT and dividing by the cross-sectional area Ac , we have

(18-14)

Once we know the boundary conditions, the solution to Equation (18-14) will
give the outlet tracer concentration–time curves. Consequently, we will have to
wait to obtain this solution until we discuss the boundary conditions in Section
18.4.2.

We are now going to proceed in the following manner: First, we will
write the balance equations for dispersion with reaction. We will discuss the
two types of boundary conditions, closed-closed and open-open. We will
then obtain an analytical solution for the closed-closed system for the conver-
sion for a first-order reaction in terms of the Peclet number, Pe (dispersion

2 O. Levenspiel, Chemical Reaction Engineering (New York: Wiley, 1962), pp.
290–293.

Measurement
point

Tracer pulse with
dispersion

t1 t2 t3 t4 t5

Figure 18-5 Dispersion in a tubular reactor. (Levenspiel, O., Chemical Reaction 
Engineering, 2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted by 
permission of John Wiley & Sons, Inc. All rights reserved.)
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Figure 18-6 Symmetric concentration gradients causing the spreading by 
dispersion of a pulse input.
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coefficient) and the Damköhler number. We then will discuss how the disper-
sion coefficient can be obtained either from correlations in the literature or from
the analysis of the RTD curve.

18.4 Flow, Reaction, and Dispersion

Now that we have an intuitive feel for how dispersion affects the transport of
molecules in a tubular reactor, we shall consider two types of dispersion in a
tubular reactor, laminar and turbulent.

18.4.1 Balance Equations

In Chapter 14 we showed that the mole balance on reacting species A flow in
a tubular reactor was 

(14-16)

Rearranging Equation (14-16) we obtain

(18-15)

This equation is a second-order ordinary differential equation. It is nonlinear
when rA is other than zero or first order.

When the reaction rate rA is first order, rA = –kCA, then Equation (18-16)

(18-16)

is amenable to an analytical solution. However, before obtaining a solution, we
put our Equation (18-16) describing dispersion and reaction in dimensionless
form by letting � � CA/CA0 and � � z /L

(18-17)

The quantity Da1 appearing in Equation (18-17) is called the Damköhler
number for a first-order conversion and physically represents the ratio

(18-18)

The other dimensionless term is the Peclet number, Pe,

(18-19)

in which l is the characteristic length term. There are two different types of
Peclet numbers in common use. We can call Per the reactor Peclet number; it
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uses the reactor length, L, for the characteristic length, so Per � UL/Da. It is
Per that appears in Equation (18-17). The reactor Peclet number, Per , for mass
dispersion is often referred to as the Bodenstein number, Bo, in reacting sys-
tems rather than the Peclet number. The other type of Peclet number can be
called the fluid Peclet number, Pef; it uses the characteristic length that deter-
mines the fluid’s mechanical behavior. In a packed bed this length is the parti-
cle diameter dp, and Pef � Udp /�Da. (The term U is the empty tube or
superficial velocity. For packed beds we often wish to use the average intersti-
tial velocity, and thus U/� is commonly used for the packed-bed velocity
term.) In an empty tube, the fluid behavior is determined by the tube diameter
dt , and Pef � Udt /Da. The fluid Peclet number, Pef, is given in virtually all lit-
erature correlations relating the Peclet number to the Reynolds number because
both are directly related to the fluid mechanical behavior. It is, of course, very
simple to convert Pef to Per: Multiply by the ratio L/dp or L/dt . The reciprocal
of Per, Da/UL, is sometimes called the vessel dispersion number.

18.4.2 Boundary Conditions

There are two cases that we need to consider: boundary conditions for closed
vessels and for open vessels. In the case of closed-closed vessels, we assume
that there is no dispersion or radial variation in concentration either upstream
(closed) or downstream (closed) of the reaction section; hence, this is a
closed-closed vessel, as shown in Figure 18-7(a). In an open vessel, dispersion
occurs both upstream (open) and downstream (open) of the reaction section;
hence, this is an open-open vessel as shown in Figure 18-7(b). These two cases
are shown in Figure 18-7, where fluctuations in concentration due to dispersion
are superimposed on the plug-flow velocity profile. A closed-open vessel
boundary condition is one in which there is no dispersion in the entrance sec-
tion but there is dispersion in the reaction and exit sections.

18.4.2A  Closed-Closed Vessel Boundary Condition

For a closed-closed vessel, we have plug flow (no dispersion) to the immediate
left of the entrance line (z = 0–) (closed) and to the immediate right of the exit
z = L (z = L+) (closed). However, between z = 0+ and z = L–, we have disper-
sion and reaction. The corresponding entrance boundary condition is

At z = 0: FA(0–) = FA(0+)

For open tubes
Per � 106,
Pef � 104

For packed beds
Per � 103,
Pef � 101

Figure 18-7 Types of boundary conditions.

Closed-closed vessel(a) (b) Open-open vessel
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Substituting for FA yields

UAcCA (0�) � �AcDa  � UAcCA (0�)

Solving for the entering concentration CA(0–) = CA0

(18-20)

At the exit to the reaction section, the concentration is continuous, and there is
no gradient in tracer concentration.

At z � L: (18-21)

These two boundary conditions, Equations (18-20) and (18-21), first
stated by Danckwerts, have become known as the famous Danckwerts bound-
ary conditions.3 Bischoff has given a rigorous derivation by solving the differ-
ential equations governing the dispersion of component A in the entrance and
exit sections, and taking the limit as the dispersion coefficient, Da in the
entrance and exit sections approaches zero.4 From the solutions, he obtained
boundary conditions on the reaction section identical with those Danckwerts
proposed.

The closed-closed concentration boundary condition at the entrance is
shown schematically in Figure 18-8 on page 857. One should not be uncom-
fortable with the discontinuity in concentration at z = 0 because if you recall
for an ideal CSTR, the concentration drops immediately on entering from CA0

to CAexit. For the other boundary condition at the exit z = L, we see the concen-
tration gradient, (dCA/dz), has gone to zero. At steady state, it can be shown
that this Danckwerts boundary condition at z = L also applies to the open-open
system at steady state.

18.4.2B  Open-Open System

For an open-open system, there is continuity of flux at the boundaries at z = 0 

FA(0–) = FA(0+)

(18-22)

3 P. V. Danckwerts, Chem. Eng. Sci., 2, 1 (1953).
4 K. B. Bischoff, Chem. Eng. Sci., 16, 131 (1961).
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At z = L, we have continuity of concentration and

(18-23)

18.4.2C  Back to the Solution for a Closed-Closed System

We now shall solve the dispersion reaction balance for a first-order reaction 

(18-17)

For the closed-closed system, the Danckwerts boundary conditions in dimen-
sionless form are

(18-24)

(18-25)

At the end of the reactor, where λ = 1, the solution to Equation (18-17) is

(18-26)
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Figure 18-8 Schematic of Danckwerts boundary conditions: (a) entrance; (b) exit.
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This solution was first obtained by Danckwerts and has been published in
many places (e.g., Levenspiel).5,6 With a slight rearrangement of Equation
(18-26), we obtain the conversion as a function of Da1 and Per.

(18-27)

Outside the limited case of a first-order reaction, a numerical solution of the
equation is required, and because this is a split-boundary-value problem, an
iterative technique is needed.

To evaluate the exit concentration given by Equation (18-26) or the con-
version given by (18-27), we need to know the Damköhler and Peclet num-
bers. The first-order reaction rate constant, k, and hence Da1 = τk, can be found
using the techniques in Chapter 7. In the next section, we discuss methods to
determine Da by finding the Peclet number.

18.4.3 Finding Da and the Peclet Number

There are three ways we can use to find Da and hence Per

1. Laminar flow with radial and axial molecular diffusion theory
2. Correlations from the literature for pipes and packed beds
3. Experimental tracer data

At first sight, simple models described by Equation (18-14) appear to
have the capability of accounting only for axial mixing effects. It will be
shown, however, that this approach can compensate not only for problems
caused by axial mixing, but also for those caused by radial mixing and other
nonflat velocity profiles.7 These fluctuations in concentration can result from
different flow velocities and pathways and from molecular and turbulent
diffusion.

18.4.4 Dispersion in a Tubular Reactor with Laminar Flow

In a laminar flow reactor, we know that the axial velocity varies in the radial
direction according to the well-known parabolic velocity profile:

u(r) = 2U

where U is the average velocity. For laminar flow, we saw that the RTD func-
tion E(t) was given by

(16-47)

5 P. V. Danckwerts, Chem. Eng. Sci., 2, 1 (1953).
6 Levenspiel, Chemical Reaction Engineering, 3rd ed. (New York: Wiley, 1999).
7 R. Aris, Proc. R. Soc. (London), A235, 67 (1956).
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In arriving at this distribution E(t), it was assumed that there was no transfer
of molecules in the radial direction between streamlines. Consequently, with
the aid of Equation (16-47), we know that the molecules on the center stream-
line (r = 0) exited the reactor at a time t = τ/2, and molecules traveling on the
streamline at r = 3R/4 exited the reactor at time

The question now arises: What would happen if some of the molecules
traveling on the streamline at r = 3R/4 jumped (i.e., diffused) onto the stream-
line at r = 0? The answer is that they would exit sooner than if they had stayed
on the streamline at r = 3R/4. Analogously, if some of the molecules from the
faster streamline at r = 0 jumped (i.e., diffused) onto the streamline at
r = 3R/4, they would take a longer time to exit (Figure 18-9). In addition to the
molecules diffusing between streamlines, they can also move forward or back-
ward relative to the average fluid velocity by molecular diffusion (Fick’s law).
With both axial and radial diffusion occurring, the question arises as to what
will be the distribution of residence times when molecules are transported
between and along streamlines by diffusion. To answer this question, we will
derive an equation for the axial dispersion coefficient, Da , that accounts for the
axial and radial diffusion mechanisms. In deriving Da , which is often referred
to as the Aris–Taylor dispersion coefficient, we closely follow the development
given by Brenner and Edwards.8

The convective–diffusion equation for solute (e.g., tracer) transport in
both the axial and radial direction can be obtained by combining Equation
(14-3) with the diffusion equation (cf. Equation (14-11)) applied to the tracer
concentration, c, and transformed to radial coordinates

(18-28)

8 H. Brenner and D. A. Edwards, Macrotransport Processes (Boston: Butterworth-
Heinemann, 1993).

t L
u
--- L

2U 1 r R�( )2
�[ ]

------------------------------------- τ
2 1 3 4�( )2

�[ ]
--------------------------------� � �

8
7
--- τ�=

Molecules diffusing
between streamlines

and back and forth
along a streamline

Figure 18-9 Radial diffusion in laminar flow.
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where c is the solute concentration at a particular r, z, and t, and DAB is the
molecular diffusion coefficient of species A in B.

We are going to change the variable in the axial direction z to , which
corresponds to an observer moving with the fluid

z* = z – Ut (18-29)

A value of  � 0 corresponds to an observer moving with the average veloc-
ity of the fluid, U. Using the chain rule, we obtain

(18-30)

Because we want to know the concentrations and conversions at the exit to the
reactor, we are really only interested in the average axial concentration, ,
which is given by

(z, t) � c(r, z, t)2�r dr (18-31)

Consequently, we are going to solve Equation (18-30) for the solution concentra-
tion as a function of r and then substitute the solution c (r, z, t) into Equation
(18-31) to find  (z, t). All the intermediate steps are given on the CRE Web site
in the Professional Reference Shelf, and the partial differential equation describ-
ing the variation of the average axial concentration with time and distance is

(18-32)

where  is the Aris-Taylor dispersion coefficient

(18-33)

That is, for laminar flow in a pipe

Figure 18-10 shows the dispersion coefficient  in terms of the ratio
/U(2R) � /Udt as a function of the product of the Reynolds (Re) and

Schmidt (Sc) numbers.

18.4.5 Correlations for Da

We will use correlations from the literature to determine the dispersion coeffi-
cient Da for flow in cylindrical tubes (pipes) and for flow in packed beds.

18.4.5A  Dispersion for Laminar and Turbulent Flow in Pipes

An estimate of the dispersion coefficient, Da, can be determined from Figure
18-11. Here, dt is the tube diameter and Sc is the Schmidt number discussed in
Chapter 14. The flow is laminar (streamline) below 2,100, and we see the ratio
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Figure 18-10 Correlation for dispersion for streamline flow in pipes. (Levenspiel, O., Chemical 
Reaction Engineering, 2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted by 
permission of John Wiley & Sons, Inc. All rights reserved.) [Note: D ≡ Da]

D
/U
d t

Re = dtUρ/µ

Flow in
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Figure 18-11 Correlation for dispersion of fluids flowing in pipes. (Levenspiel, O., Chemical 
Reaction Engineering, 2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted by 
permission of John Wiley & Sons, Inc. All rights reserved.) [Note: D � Da]
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(Da/Udt) increases with increasing Schmidt and Reynolds numbers. Between
Reynolds numbers of 2,100 and 30,000, one can put bounds on Da by calculating
the maximum and minimum values at the top and bottom of the shaded regions.

18.4.5B  Dispersion in Packed Beds

For the case of gas–solid and liquid–solid catalytic reactions that take place in
packed-bed reactors, the dispersion coefficient, Da, can be estimated by using
Figure 18-12. Here, dp is the particle diameter and ε is the porosity. 

18.4.6 Experimental Determination of Da

The dispersion coefficient can be determined from a pulse tracer experiment.
Here, we will use tm and �2 to solve for the dispersion coefficient Da and then
the Peclet number, Per. Here the effluent concentration of the reactor is mea-
sured as a function of time. From the effluent concentration data, the mean res-
idence time, tm, and variance, �2, are calculated, and these values are then used
to determine Da. To show how this is accomplished, we will write the unsteady
state mass balance on the tracer flowing in a tubular reactor

(18-13)

in dimensionless form, discuss the different types of boundary conditions at
the reactor entrance and exit, solve for the exit concentration as a function of
dimensionless time (� � t /τ), and then relate Da , �2, and τ.

18.4.6A  The Unsteady-State Tracer Balance

The first step is to put Equation (18-13) in dimensionless form to arrive at the
dimensionless group(s) that characterize the process. Let

ψ � , � � , and � � 

D
/U

d p
ε

Re = dpUρ/µ

Figure 18-12 Experimental findings on dispersion of fluids flowing with mean 
axial velocity u in packed beds. (Levenspiel. O., Chemical Reaction Engineering, 
2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted by permission of John 
Wiley & Sons, Inc. All rights reserved.) [Note: D � Da]
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For a pulse input, CT0 is defined as the mass of tracer injected, M, divided by
the vessel volume, V. Then

(18-34)

The initial condition is

At t = 0,    z > 0,    CT(0+,0) = 0,    �(0+)� 0 (18-35)

The mass of tracer injected, M, is

M = UAc (0–, t) dt

18.4.6B  Solution for a Closed-Closed System

In dimensionless form, the Danckwerts boundary conditions are

At λ = 0: (18-36)

At λ = 1: (18-37)

Equation (18-34) has been solved numerically for a pulse injection, and the
resulting dimensionless effluent tracer concentration, �exit, is shown as a func-
tion of the dimensionless time Θ in Figure 18-13 for various Peclet numbers.
Although analytical solutions for � can be found, the result is an infinite series.
The corresponding equations for the mean residence time, tm , and the variance,
�2, are 9

(18-38)

and

(t � τ)2E(t) dt

which can be used with the solution to Equation (18-34) to obtain

9 See K. Bischoff and O. Levenspiel, Adv. Chem. Eng., 4, 95 (1963).
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(18-39)

Consequently, we see that the Peclet number, Per (and hence Da), can be found
experimentally by determining tm and �2 from the RTD data and then solving
Equation (18-39) for Per.

18.4.6C  Open-Open Vessel Boundary Conditions

When a tracer is injected into a packed bed at a location more than two or
three particle diameters downstream from the entrance and measured some dis-
tance upstream from the exit, the open-open vessel boundary conditions apply.
For an open-open system, an analytical solution to Equation (18-14) can be
obtained for a pulse tracer input.

For an open-open system, the boundary conditions at the entrance are

FT (0�, t) � FT (0�, t)

10O. Levenspiel, Chemical Reaction Engineering, 2nd ed. (New York: Wiley, 1972),
p. 277.
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Figure 18-13 C-curves in closed vessels for various extents of back-mixing as 
predicted by the dispersion model. (Levenspiel, O., Chemical Reaction Engineering, 
2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted by permission of John 
Wiley & Sons, Inc. All rights reserved.) [Note: D � Da]10
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Then, for the case when the dispersion coefficient is the same in the entrance
and reaction sections

(18-40)

Because there are no discontinuities across the boundary at 

 

z

 

 = 0

(18-41)

At the exit

(18-42)

(18-43)

There are a number of perturbations of these boundary conditions that can be
applied. The dispersion coefficient can take on different values in each of the
three regions (

 

z

 

 < 0, 0 < 

 

z

 

 < 

 

L

 

, and z > 

 

L

 

), and the tracer can also be injected
at some point 

 

z

 

1

 

 rather than at the boundary, 

 

z

 

 = 0. These cases and others can
be found in the supplementary readings cited at the end of the chapter. We
shall consider the case when there is no variation in the dispersion coefficient
for all 

 

z

 

 and an impulse of tracer is injected at 

 

z

 

 = 0 at 

 

t

 

 = 0.
For long tubes (

 
Pe

 
r  
 > 100) in which the concentration gradient at ± 

 
∞

 will be zero, the solution to Equation (18-34) at the exit is  11 

(18-44)

The mean residence time for an open-open system is

(18-45)

where 

 

τ

 

 is based on the volume between z = 0 and z = L (i.e., reactor volume
measured with a yardstick). We note that the mean residence time for an open
system is greater than that for a closed system. The reason is that the mole-
cules can diffuse back into the reactor after they diffuse out at the entrance.
The variance for an open-open system is

(18-46)

 

11
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 (New York: Academic Press, 1960),
pp. 17, 47.
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We now consider two cases for which we can use Equations (18-39) and
(18-46) to determine the system parameters:

Case 1. The space time τ is known. That is, V and v0 are measured
independently. Here, we can determine the Peclet number by
determining tm and �2 from the concentration–time data and
then use Equation (18-46) to calculate Per. We can also calcu-
late tm and then use Equation (18-45) as a check, but this is
usually less accurate.

Case 2. The space time τ is unknown. This situation arises when there
are dead or stagnant pockets that exist in the reactor along with
the dispersion effects. To analyze this situation, we first calcu-
late mean residence time, tm, and the variance, �2, from the
data as in case 1. Then, we use Equation (18-45) to eliminate
τ2 from Equation (18-46) to arrive at 

(18-47)

We now can solve for the Peclet number in terms of our exper-
imentally determined variables �2 and . Knowing Per, we
can solve Equation (18-45) for τ, and hence V. The dead vol-
ume is the difference between the measured volume (i.e., with
a yardstick) and the effective volume calculated from the RTD.

Example 18–1 Conversion Using Dispersion and Tanks-in-Series Models

The first-order reaction

A B

is carried out in a 10-cm-diameter tubular reactor 6.36 m in length. The specific
reaction rate is 0.25 min�1. The results of a tracer test carried out on this reactor are
shown in Table E18-1.1.

Calculate the conversion using (a) the closed vessel dispersion model, (b) PFR,
(c) the tanks-in-series model, and (d) a single CSTR.

Solution

(a) We will use Equation (18-27) to calculate the conversion

(18-27)

where  Da1 � τk, and Per � UL/Da . 

TABLE E18-1.1  EFFLUENT TRACER CONCENTRATION AS A FUNCTION OF TIME

t  (min) 0 1 2 3  4 5 6 7 8 9 10 12 14

C (mg/L) 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0
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(1) Parameter evaluation using the RTD data to evaluate Per:
We can calculate Per from Equation (18-39)

(18-39)

However, we must find τ2 and �2 from the tracer concentration data first.

We note that this is the same data set used in Examples 16-1 and 16-2

TABLE E18-1.2 POLYMATH PROGRAM AND RESULTS TO CALCULATE THE 
MEAN RESIDENCE TIME, tm, AND THE VARIANCE �2

where we found

tm � 5.15 minutes

and

�2 � 6.1 minutes2

We will use these values in Equation 18-39 to calculate Per .
Dispersion in a closed vessel is represented by

(18-39)

Solving for Per either by trial and error or using Polymath, we obtain

Per � 7.5 (E18-1.3)

(2) Next, we calculate Da1 and q:

Da1 � τk � (5.15 min)(0.25 min�1) � 1.29 (E18-1.4)

Using the equations for q and X gives

(E18-1.5)
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�2 from RTD data.
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Here again,
spreadsheets can be
used to calculate τ2

and �2.

Calculated values of DEQ variables
Variable Initial value Final value

1 Area 51. 51.
2 C 0.0038746 0.0148043
3 C1 0.0038746 -387.266
4 C2 -33.43818 0.0148043
5 E 7.597E-05 0.0002903
6 Sigma2 0 6.212473
7 t 0 14.
8 tmf 5.1 5.1

Differential equations
1 d(Sigma2)/d(t) = (t-tmf)^2*E

Explicit equations
1 C1 = 0.0038746 + 0.2739782*t + 1.574621*t^2 - 0.2550041*t^3
2 Area = 51
3 C2 = -33.43818 + 37.18972*t - 11.58838*t^2 + 1.695303*t^3 -

0.1298667*t^4 + 0.005028*t^5 - 7.743*10^-5*t^6
4 C = If(t<=4 and t>=0) then C1 else if(t>4 and t<=14) then C2 else 0
5 E = C/Area
6 tmf = 5.1

POLYMATH Report
Ordinary Differential Equations

Don’t fall asleep.
These are

calculations we
need to know how

to carry out.

Calculate Per from
tm and �2.
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Next, calculate
Da1 , q, and X.

q 1
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Per
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Then

(E18-1.6)

(3) Finally, we calculate the conversion:
Substitution into Equation (18-27) yields

When dispersion effects are present in this tubular reactor, 68% conversion is
achieved.

(b) If the reactor were operating ideally as a plug-flow reactor, the conversion
would be

X � 1 � e�τk � 1 � e�Da1 � 1 � e�1.29 � 0.725 (E18-1.7)

That is, 72.5% conversion would be achieved in an ideal plug-flow reactor.
(c) Conversion using the tanks-in-series model: We recall Equation (18-11) to

calculate the number of tanks in series:

(E18-1.8)

To calculate the conversion for the T-I-S model, we recall Equation (5-15). For a
first-order reaction for n tanks in series, the conversion is

(E18-1.9)

(d) For a single CSTR

(E18-1.10)

So, 56.3% conversion would be achieved in a single ideal tank.
Summary:

In this example, correction for finite dispersion, whether by a dispersion model or a
tanks-in-series model, is significant when compared with a PFR.

Analysis: This example is a very important and comprehensive one. We showed
how to calculate the conversion by (1) choosing a model, (2) using the RTD to eval-
uate the model parameters, and (3) substituting the reaction-rate parameters in the
chosen model. As expected, the dispersion and T-I-S model gave essentially the
same result and this result fell between the limits predicted by an ideal PFR and an
ideal CSTR.
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Summary

PFR: X 72.5%�

Dispersion: X 68.0%�

Tanks in series: X 67.7%�

Single CSTR: X 56.3%�
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18.5 Tanks-in-Series Model versus Dispersion Model

We have seen that we can apply both of these one-parameter models to tubular
reactors using the variance of the RTD. For first-order reactions, the two mod-
els can be applied with equal ease. However, the tanks-in-series model is math-
ematically easier to use to obtain the effluent concentration and conversion for
reaction orders other than one, and for multiple reactions. However, we need
to ask what would be the accuracy of using the tanks-in-series model over the
dispersion model. These two models are equivalent when the Peclet–Boden-
stein number is related to the number of tanks in series, n, by the equation12

Bo = 2(n – 1) (18-48)

or

(18-49)

where

Bo = UL/Da (18-50)

where U is the superficial velocity, L the reactor length, and Da the dispersion
coefficient.

For the conditions in Example 18-1, we see that the number of tanks cal-
culated from the Bodenstein number, Bo (i.e., Per), Equation (18-49), is 4.75,
which is very close to the value of 4.35 calculated from Equation (18-11).
Consequently, for reactions other than first order, one would solve successively
for the exit concentration and conversion from each tank in series for both a
battery of four tanks in series and for five tanks in series in order to bound the
expected values.

In addition to the one-parameter models of tanks-in-series and disper-
sion, many other one-parameter models exist when a combination of ideal
reactors is used to model the real reactor shown in Section 18.7 for reactors
with bypassing and dead volume. Another example of a one-parameter model
would be to model the real reactor as a PFR and a CSTR in series with the one
parameter being the fraction of the total volume that behaves as a CSTR. We
can dream up many other situations that would alter the behavior of ideal reac-
tors in a way that adequately describes a real reactor. However, it may be that
one parameter is not sufficient to yield an adequate comparison between theory
and practice. We explore these situations with combinations of ideal reactors in
the section on two-parameter models.

The reaction-rate parameters are usually known (e.g., Da), but the Peclet
number is usually not known because it depends on the flow and the vessel.
Consequently, we need to find Per using one of the three techniques discussed
earlier in the chapter.

12K. Elgeti, Chem. Eng. Sci., 51, 5077 (1996).

Equivalency
between models of
tanks-in-series and

dispersion n Bo
2

------ 1��
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18.6 Numerical Solutions to Flows with Dispersion 
and Reaction 

We now consider dispersion and reaction in a tubular reactor. We first write our
mole balance on species A in cylindrical coordinates by recalling Equation
(18-28) and including the rate of formation of A, rA. At steady state we obtain

(18-51)

Analytical solutions to dispersion with reaction can only be obtained for iso-
thermal zero- and first-order reactions. We are now going to use COMSOL to
solve the flow with reaction and dispersion with reaction.

We are going to compare two solutions: one which uses the Aris–Taylor
approach and one in which we numerically solve for both the axial and radial
concentration using COMSOL. These solutions are on the CRE Web site.

Case A. Aris-Taylor Analysis for Laminar Flow

For the case of an nth-order reaction, Equation (18-15) is

(18-52)

where  is the average concentration from r = 0 to r = R, i.e., 

If we use the Aris-Taylor analysis, we can use Equation (18-15) with a caveat
that  and λ = z/L we obtain

(18-53)

where

For the closed-closed boundary conditions we have

(18-54)
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For the open-open boundary conditions we have

(18-55)

Equation (18-53) is a nonlinear second-order ODE that is solved on the COMSOL
on the CRE Web site.

Case B. Full Numerical Solution

To obtain profiles, CA(r,z), we now solve Equation (18-51) 

(18-51)

First, we will put the equations in dimensionless form by letting ,
λ = z/L, and φ = r/R. Following our earlier transformation of variables, Equa-
tion (18-52) becomes

(18-56)

Equation (18-56) gives the dimensionless concentration profiles for dispersion
and reaction in a laminar-flow reactor. The Expanded Material on the CRE
Web site gives an example, Web Example 18-2, where COMSOL is used to
find the concentration profile.

18.7 Two-Parameter Models—Modeling Real 
Reactors with Combinations of Ideal Reactors

We now will see how a real reactor might be modeled by different combina-
tions of ideal reactors. Here, an almost unlimited number of combinations that
could be made. However, if we limit the number of adjustable parameters to
two (e.g., bypass flow rate, vb, and dead volume, VD), the situation becomes
much more tractable. After reviewing the steps in Table 18-1, choose a model
and determine if it is reasonable by qualitatively comparing it with the RTD
and, if it is, determine the model parameters. Usually, the simplest means of
obtaining the necessary data is some form of a tracer test. These tests have
been described in Chapters 16 and 17, together with their uses in determining
the RTD of a reactor system. Tracer tests can be used to determine the RTD,
which can then be used in a similar manner to determine the suitability of the
model and the value of its parameters.
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In determining the suitability of a particular reactor model and the
parameter values from tracer tests, it may not be necessary to calculate the
RTD function E(t). The model parameters (e.g., VD) may be acquired directly
from measurements of effluent concentration in a tracer test. The theoretical
prediction of the particular tracer test in the chosen model system is compared
with the tracer measurements from the real reactor. The parameters in the
model are chosen so as to obtain the closest possible agreement between the
model and experiment. If the agreement is then sufficiently close, the model is
deemed reasonable. If not, another model must be chosen.

The quality of the agreement necessary to fulfill the criterion “suffi-
ciently close” again depends on creativity in developing the model and on
engineering judgment. The most extreme demands are that the maximum error
in the prediction not exceed the estimated error in the tracer test, and that there
be no observable trends with time in the difference between prediction (the
model) and observation (the real reactor). To illustrate how the modeling is
carried out, we will now consider two different models for a CSTR.

18.7.1 Real CSTR Modeled Using Bypassing and Dead Space

A real CSTR is believed to be modeled as a combination of an ideal CSTR
with a well-mixed volume Vs , a dead zone of volume Vd , and a bypass with a
volumetric flow rate  (Figure 18-14). We have used a tracer experiment to
evaluate the parameters of the model Vs and . Because the total volume and
volumetric flow rate are known, once Vs and  are found,  and Vd can
readily be calculated.

18.7.1A  Solving the Model System for CA and X

We shall calculate the conversion for this model for the first-order reaction

A B

The bypass stream and effluent stream from the reaction volume are mixed at
the junction point 2. From a balance on species A around this point

(18-57)

The model system

vb

vs

vs vb

Figure 18-14 (a) Real system; (b) model system.
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We can solve for the concentration of A leaving the reactor

Let � � Vs /V and � � . Then

CA � �CA0 � (1 � �)CAs (18-58)

For a first-order reaction, a mole balance on Vs gives

CA0 � CAs � kCAsVs � 0 (18-59)

or, in terms of � and �

(18-60)

Substituting Equation (18-60) into (18-58) gives the effluent concentration of
species A:

(18-61)

We have used the ideal reactor system shown in Figure 18-14 to predict
the conversion in the real reactor. The model has two parameters, � and �. The
parameter α is the dead zone volume fraction and parameter β is the fraction
of the volumetric flow rate that bypasses the reaction zone. If these parameters
are known, we can readily predict the conversion. In the following section, we
shall see how we can use tracer experiments and RTD data to evaluate the
model parameters.

18.7.1B Using a Tracer to Determine the Model Parameters 
in a CSTR-with-Dead-Space-and-Bypass Model

In Section 18.7.1A, we used the system shown in Figure 18-15, with bypass
flow rate, , and dead volume, Vd, to model our real reactor system. We shall
inject our tracer, T, as a positive-step input. The unsteady-state balance on the
nonreacting tracer, T, in the well-mixed reactor volume, Vs, is

In – out = accumulation

(18-62)

The conditions for the positive-step input are

A balance around junction point 2 gives

(18-63)
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As before

Integrating Equation (18-62) and substituting in terms of � and � gives

(18-64)

Combining Equations (18-63) and (18-64), the effluent tracer concentration is

(18-65)

We now need to rearrange this equation to extract the model parameters, α and
β , either by regression (Polymath/MATLAB/Excel) or from the proper plot of
the effluent tracer concentration as a function of time. Rearranging yields

(18-66)

Consequently, we plot ln[CT0/(CT0 � CT)] as a function of t. If our
model is correct, a straight line should result with a slope of (1 � �)/τ� and
an intercept of ln[1/(1 � �)].

Example 18–2 CSTR with Dead Space and Bypass

The elementary reaction

A � B C � D

is to be carried out in the CSTR shown schematically in Figure 18-15. There is both
bypassing and a stagnant region in this reactor. The tracer output for this reactor is
shown in Table E18-2.1. The measured reactor volume is 1.0 m3 and the flow rate to
the reactor is 0.1 m3/min. The reaction-rate constant is 0.28 m3/kmol�min. The feed
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Figure 18-15 Model system: CSTR with dead volume and bypassing.
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is equimolar in A and B with an entering concentration of A equal to 2.0 kmol/m3.
Calculate the conversion that can be expected in this reactor (Figure E18-2.1).

The entering tracer concentration is CT0 = 2000 mg/dm3.

Solution

Recalling Equation (18-66)

(18-66)

Equation (18-66) suggests that we construct Table E18-2.2 from Table E18-2.1 and
plot CT0/(CT0 � CT) as a function of time on semilog paper. Using this table we get
Figure E18-2.2.

We can find α and β from either a semilog plot, as shown in Figure E18-2.2, or by
regression using Polymath, MATLAB, or Excel.
The volumetric flow rate to the well-mixed portion of the reactor, , can be deter-
mined from the intercept, I

TABLE E18-2.1  TRACER DATA FOR STEP INPUT

CT (mg/dm3) 1000 1333 1500 1666 1750 1800

t (min) 4 8 10 14 16 18

TABLE E18-2.2  PROCESSED DATA

t (min) 4 8 10 14 16 18

2 3 4 6 8 10

Two-parameter
model

C
T0

CA0

v
0

v
0  

v
b

CTS

C
T

VS

C
A

CAS

2

1 0

Figure E18-2.1 Schematic of real reactor modeled with dead space (Vd) and 
bypass .vb( )
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The volume of the well-mixed region, 

 

V

 

s

 

, can be calculated from the slope, 
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,

We now proceed to determine the conversion corresponding to these model parameters.
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2. Rate law:

 

Equalmolar feed 
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3. Combining

 

 Equations (E18-2.1) and (E18-2.2) gives

(E18-2.3)

Rearranging, we have
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Solving for CAs yields

(E18-2.5)

Figure E18-2.2 Response to a step input.
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4. Balance around junction point 2:

(E18-2.6)

Rearranging Equation (E18-4.6) gives us

(E18-2.7)

5. Parameter evaluation:

(E18-2.8)

Substituting into Equation (E18-2.7) yields

If the real reactor were acting as an ideal CSTR, the conversion would be

(E18-2.9)

(E18-2.10)

Analysis: In this example we used a combination of an ideal CSTR with a dead vol-
ume and bypassing to model a nonideal reactor. If the nonideal reactor behaved as
an ideal CSTR, a conversion of 66% was expected. Because of the dead volume, not
all the space would be available for reaction; also, some of the fluid did not enter
the space where the reaction was taking place and, as a result, the conversion in this
nonideal reactor was only 51%.

Other Models. In Section 18.7.1 it was shown how we formulated a model
consisting of ideal reactors to represent a real reactor. First, we solved for
the exit concentration and conversion for our model system in terms of two
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parameters, � and �. We next evaluated these parameters from data on tracer
concentration as a function of time. Finally, we substituted these parameter
values into the mole balance, rate law, and stoichiometric equations to pre-
dict the conversion in our real reactor.

To reinforce this concept, we will use one more example.

18.7.2 Real CSTR Modeled as Two CSTRs with Interchange

In this particular model there is a highly agitated region in the vicinity of the
impeller; outside this region, there is a region with less agitation (Figure
18-16). There is considerable material transfer between the two regions. Both
inlet and outlet flow channels connect to the highly agitated region. We shall
model the highly agitated region as one CSTR, the quieter region as another
CSTR, with material transfer between the two.

18.7.2A Solving the Model System for CA and X

Let � represent that fraction of the total flow that is exchanged between reac-
tors 1 and 2; that is,

and let � represent that fraction of the total volume, V, occupied by the highly
agitated region:

Then

The space time is

The model system

(a) (b)

V1
V2

CA1

CA1

CA2

v0

v

v

v

Figure 18-16 (a) Real reaction system; (b) model reaction system.
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As shown on the CRE Web site Professional Reference Shelf R18.2, for a
first-order reaction, the exit concentration and conversion are

(18-67)

and

(18-68)

where CA1 is the reactor concentration exiting the first reactor in Figure 18-17(b).

18.7.2B Using a Tracer to Determine the Model Parameters 
in a CSTR with an Exchange Volume

The problem now is to evaluate the parameters � and � using the RTD data. A
mole balance on a tracer pulse injected at t � 0 for each of the tanks is 

(18-69)

and CT1 is the measured tracer concentration existing the real reactor. The
tracer is initially dumped only into reactor 1, so that the initial conditions
CT10 � NT0/V1 and CT20 � 0.

Substituting in terms of �, �, and τ, we arrive at two coupled differential
equations describing the unsteady behavior of the tracer that must be solved
simultaneously.

Analytical solutions to Equations (18-71) and (18-72) are given on the CRE
Web site, in Appendix A.3 and in Equation (18-73), below. However, for more
complicated systems, analytical solutions to evaluate the system parameters
may not be possible.

(18-73)
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By regression on Equation (18-73) and the data in Table E18-2.2 or by an
appropriate semilog plot of 
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 versus time, one can evaluate the model
parameters 
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18.8 Use of Software Packages to Determine 
the Model Parameters

 

If analytical solutions to the model equations are not available to obtain the
parameters from RTD data, one could use ODE solvers. Here, the RTD data
would first be fit to a polynomial to the effluent concentration–time data and
then compared with the model predictions for different parameter values.

 

Example 18–3 CSTR with Bypass and Dead Volume

 

(a)

 

 Determine parameters 

 

�

 

 and 

 

�

 

 that can be used to model two CSTRs with inter-
change using the tracer concentration data listed in Table E18-3.1.
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Solution

 

First, we will use Polymath to fit the RTD to a polynomial. Because of the steepness
of the curve, we shall use two polynomials. 
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where CTe is the exit concentration of tracer determined experimentally. Next we
would enter the tracer mole (mass) balances Equations (18-66) and (18-67) into an
ODE solver. The Polymath program is shown in Table E18-3.2. Finally, we vary the
parameters � and � and then compare the calculated effluent concentration CT1 with
the experimental effluent tracer concentration CTe. After a few trials, we converge on
the values � � 0.8 and � � 0.1. We see from Figure E18-3.1 and Table E18-3.3 that
the agreement between the RTD data and the calculated data is quite good, indicat-
ing the validity of our values of � and �. The graphical solution to this problem is
given in the Chapter 18 Learning Resources 3, Solved Problems, on the CRE Web
site. We now substitute these values in Equation (18-68), and as shown on the CRE

TABLE E18-3.1  RTD DATA

t (min) 0.0 20 40 60 80 120 160 200 240

CTe (g/m3) 2000 1050 520 280 160 61 29 16.4 10.0

t 80�

t 80�

Trial and error using
software packages
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Web site, the corresponding conversion is 51% for the model system of two CSTRs
with interchange

(18-68)

Comparing models, we find

 (Xmodel � 0.51) � (XCSTR � 0.55) � (XPFR � 0.7)

TABLE E18-3.2  POLYMATH PROGRAM: TWO CSTRS WITH INTERCHANGE

X 1
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---------�
� �tk�( ) � 1 ��( ) tk�[ ] �2�
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-----------------------------------------------------------------------------------� �
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Figure E18-3.1 Comparison of model and experimental exit tracer concentrations.
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Analysis: For the two-parameter model chosen, we used the RTD to determine the
two parameters’ dead volume and fraction of fluid bypassed. We then calculated the
exit trace concentration using the ideal CSTR balance equations but with a lesser
reactor volume and a smaller flow rate through the reactor and compared it with the
experimental data. 

18.9 Other Models of Nonideal Reactors 
Using CSTRs and PFRs

Several reactor models have been discussed in the preceding pages. All are
based on the physical observation that in almost all agitated tank reactors,
there is a well-mixed zone in the vicinity of the agitator. This zone is usually
represented by a CSTR. The region outside this well-mixed zone may then be
modeled in various fashions. We have already considered the simplest models,
which have the main CSTR combined with a dead-space volume; if some
short-circuiting of the feed to the outlet is suspected, a bypass stream can be
added. The next step is to look at all possible combinations that we can use to
model a nonideal reactor using only CSTRs, PFRs, dead volume, and bypass-
ing. The rate of transfer between the two reactors is one of the model parame-
ters. The positions of the inlet and outlet to the model reactor system depend
on the physical layout of the real reactor. 

Figure 18-17(a) describes a real PFR or PBR with channeling that is
modeled as two PFRs/PBRs in parallel. The two parameters are the fraction of
flow to the reactors [i.e., � and (1 � �)] and the fractional volume [i.e., � and
(1 � �)] of each reactor. Figure 18-17(b) describes a real PFR/PBR that has a
backmix region and is modeled as a PFR/PBR in parallel with a CSTR.
Figures 18-18(a) and (b) on page 884 show a real CSTR modeled as two
CSTRs with interchange. In one case, the fluid exits from the top CSTR (a)
and in the other case the fluid exits from the bottom CSTR (b). The parameter
� represents the interchange volumetric flow rate, �v0, and � the fractional
volume of the top reactor, �V, where the fluid exits the reaction system. We
note that the reactor in Figure 18-18(b) was found to describe extremely well

TABLE E18-3.3  COMPARING MODEL (CT1) WITH EXPERIMENT (CTe)

Two CSTRs with
interchange

A case history for
terephthalic acid
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a real reactor used in the production of terephthalic acid.13 A number of other
combinations of ideal reactions can be found in Levenspiel.14

18.10 Applications to Pharmacokinetic Modeling

The use of combinations of ideal reactors to model metabolism and drug distri-
bution in the human body is becoming commonplace. For example, one of the
simplest models for drug adsorption and elimination is similar to that shown in
Figure 18-18(a). The drug is injected intravenously into a central compartment
containing the blood (the top reactor). The blood distributes the drug back and
forth to the tissue compartment (the bottom reactor) before being eliminated
(top reactor). This model will give the familiar linear semi-log plot found in

13Proc. Indian Inst. Chem. Eng. Golden Jubilee, a Congress, Delhi, 1997, p. 323.
14Levenspiel, O. Chemical Reaction Engineering, 3rd ed. (New York: Wiley, 1999), 

pp. 284–292.

Model SystemReal System

(a)

v0
v0

v0

v0

Model SystemReal System

E(θ)

E(θ)

F(θ)

F(θ)

(b)

}

v0

v0

v0

v0

Figure 18-17 Combinations of ideal reactors used to model real tubular reactors:
(a) two ideal PFRs in parallel; (b) ideal PFR and ideal CSTR in parallel.

Models for
Nonideal
Reactors



884 Models for Nonideal Reactors Chapter 18

pharmacokinetics textbooks. As can be seen in Chapter 9, in the figure for Pro-
fessional Reference Shelf R9.8 on the CRE Web site on pharmacokinetics, and
on page 389, there are two different slopes, one for the drug distribution phase
and one for the elimination phase. 

Model

E(t) F(t)

t t

(a)

V

Model

E(t) F(t)

t t

(b)

V

v0

v0

v0

v0

βv0 βv0

v0

v0

v0

v0

βv0v0

Figure 18-18 Combinations of ideal reactors to model a real CSTR. Two ideal CSTRs 
with interchange (a) exit from the top of the CSTR; (b) exit from the bottom of the CSTR.

Closure.  

In this chapter, models were developed for existing reactors to obtain more
precise estimates of the exit conversion and concentrations than those from
the zero-order parameter models of segregation and maximum mixedness.
After completing this chapter, the reader will be able to use the RTD data and
kinetic rate law and reactor model to make predictions of the conversion and
exit concentrations using the tanks-in-series and dispersion one-parameter
models. In addition, the reader should be able to create two-parameter models
consisting of combinations of ideal reactors that mimic the RTD data. Using
the models and rate law data, one can then solve for the exit conversions and
concentrations. The choice of a proper model is almost pure art requiring cre-
ativity and engineering judgment. The flow pattern of the model must possess
the most important characteristics of that in the real reactor. Standard models
are available that have been used with some success, and these can be used as
starting points. Models of real reactors usually consist of combinations of
ideal PFRs and CSTRs with fluid exchange, bypassing, and dead spaces in a
configuration that matches the flow patterns in the reactor. For tubular reac-
tors, the simple dispersion model has proven most popular.

In summary, the parameters in the model, which with rare exception
should not exceed two in number, are obtained from the RTD data. Once the
parameters are evaluated, the conversion in the model, and thus in the real reac-
tor, can be calculated. For typical tank-reactor models, this can be calculated
for the conversion in a series–parallel reactor system. For the dispersion model,
the second-order differential equation must be solved, usually numerically.
Analytical solutions exist for first-order reactions, but as pointed out previously,
no model has to be assumed for the first-order system if the RTD is available.

RTD Data + Model + Kinetics = Prediction
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Correlations exist for the amount of dispersion that might be expected
in common packed-bed reactors, so these systems can be designed using the
dispersion model without obtaining or estimating the RTD. This situation is
perhaps the only one where an RTD is not necessary for designing a non-
ideal reactor.

S U M M A R Y

1. The models for predicting conversion from RTD data are:
a. Zero adjustable parameters

(1) Segregation model
(2) Maximum mixedness model

b. One adjustable parameter
(1) Tanks-in-series model
(2) Dispersion model

c. Two adjustable parameters: real reactor modeled as combinations of ideal reactors
2. Tanks-in-series model: Use RTD data to estimate the number of tanks in series,

(S18-1)

For a first-order reaction

X � 1 � 

3. Dispersion model: For a first-order reaction, use the Danckwerts boundary conditions

(S18-2)

where

(S18-3)

Da1 � τk (S18-4)

For a first-order reaction

Per � Pef  � (S18-5)

4. Determine Da

a. For laminar flow, the dispersion coefficient is

(S18-6)

b. Correlations. Use Figures 18-10 through 18-12.
c. Experiment in RTD analysis to find tm and .
For a closed-closed system, use Equation (S18-6) to calculate Per from the RTD data

n t2

�2
-----�

1
1 ti k�( )n

-----------------------

X 1
4q Per 2�( )exp

1 q�( )2  Perq 2�( ) 1 q�( )2 P� er q 2�( )exp�exp
----------------------------------------------------------------------------------------------------------------------��

q 1
4Da1

Per

------------��

UL
Da

--------
Udp

Da�
-----------

D� DAB
U2R2

48DAB

----------------��

�2
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(S18-7)

For an open-open system, use

(18-47)

5. If a real reactor is modeled as a combination of ideal reactors, the model should have at most two
parameters.

6. The RTD is used to extract model parameters.
7. Comparison of conversions for a PFR and CSTR with the zero-parameter and two-parameter models.

Xseg symbolizes the conversion obtained from the segregation model and Xmm is that from the maxi-
mum mixedness model for reaction orders greater than one.

Cautions: For rate laws with unusual concentration functionalities or for nonisothermal operation, these
bounds may not be accurate for certain types of rate laws.

C R E  W E B  S I T E  M A T E R I A L S

• Expanded Material on the Web Site
1. W18.2.1 Developing the E-Curve for T-I-S
2. Web Example 18-1 Equivalency of Models for a First Order Reaction

 XT-I-S �Xseg � Xmm

3. Sloppy Tracer Inputs
4. Case A Aris-Taylor Analysis for LFR
5. Web Example 18-2 Dispersion with Reaction
6. Web Example 18-2 (COMSOL)
7. Web Problem 18-12C

8. Web Problem 18-14D

9. Web Problem 18-17D

10. Web Problem 18-18B

11. Web Problem 18-19C

12. Web Problem 18-20B
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Two CSTRs with 
interchange
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• Learning Resources
1. Summary Notes

• Living Example Problems
1. Example 18-3 CSTR with Bypass and Dead Volume

• Professional Reference Shelf
R18.1 Derivation of Equation for Taylor-Aris Dispersion

R18.2 Real Reactor Modeled as two Ideal CSTRs with Exchange Volume
Example R18-1  Two CSTRs with interchange

Q U E S T I O N S  A N D  P R O B L E M S

The subscript to each of the problem numbers indicates the level of difficulty: A, least difficult; D, most difficult.

Questions

Q18-1B Make up and solve an original problem. The guidelines are given in Problem
P5-1A. However, make up a problem in reverse by first choosing a model system
such as a CSTR in parallel with a CSTR and PFR (with the PFR modeled as
four small CSTRs in series) or a CSTR with recycle and bypass (Figure Q18-1B).
Write tracer mass balances and use an ODE solver to predict the effluent con-
centrations. In fact, you could build up an arsenal of tracer curves for different
model systems to compare against real reactor RTD data. In this way, you could deduce which model
best describes the real reactor.

Q18-2 What if you were asked to design a tubular vessel that would minimize dispersion? What would be
your guidelines? How would you maximize the dispersion? How would your design change for a
packed bed?

�C
�t
------- U�C

�z*
------- D*

�
�

2C

�z*2
----------�

D* DAB�
U2R2

48DAB

----------------�

CA1

C
A1

CA2

v
0

v0

v1

v1

V V
1

2
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Q18-3 What if someone suggested you could use the solution to the flow-dispersion-reactor equation, Equation
(18-27), for a second-order equation by linearizing the rate law by lettering 
–rA =  ≅ (kCA0/2)CA = . (1) Under what circumstances might this be a good approximation?
Would you divide CA0 by something other than 2? (2) What do you think of linearizing other
non-first-order reactions and using Equation (18-27)? (3) How could you test your results to learn if
the approximation is justified?

Problems

P18-1B (a) Example 18-1. Vary Da, k, U, and L. To what parameters or groups of
parameters (e.g., kL2/Da) would the conversion be most sensitive? What if
the first-order reaction were carried out in tubular reactors of different
diameters, but with the space time, τ, remaining constant? The diameters
would range from a diameter of 0.1 dm to a diameter of 1 m for kinematic
viscosity � = µ/ρ = 0.01 cm2/s, U = 0.1 cm/s, and DAB = 10–5 cm2/s. How
would your conversion change? Is there a diameter that would maximize
or minimize conversion in this range?

(b) Example 18-2. How would your answers change if the slope was 4 min–1 and the intercept was 2
in Figure E18-2.2?

(c) Example 18-3. Download the Living Example Polymath Program. Vary α and β, and describe
what you find. What would be the conversion if α = 0.75 and β = 0.15?

P18-2B The gas-phase isomerization

A B

is to be carried out in a flow reactor. Experiments were carried out at a volumetric flow rate of
v0 = 2 dm3/min in a reactor that had the following RTD

E(t) � 10 e�10t min�1

where t is in minutes. 
(a) When the volumetric flow rate was 2 dm3/min, the conversion was 9.1%. What is the reactor volume?
(b) When the volumetric flow rate was 0.2 dm3/min, the conversion was 50%. When the volumetric

flow rate was 0.02 dm3/min, the conversion was 91%. Assuming the mixing patterns don’t change
as the flow rate changes, what will the conversion be when the volumetric flow rate is
10 dm3/min?

(c) This reaction is now to be carried out in a 1-dm3 plug-flow reactor where volumetric flow rate has
been changed to 1 dm3/min. What will be the conversion?

(d) It is proposed to carry out the reaction in a 10-m-diameter pipe where the flow is highly turbulent
(Re � 106). There are significant dispersion effects. The superficial gas velocity is 1 m/s. If the
pipe is 6 m long, what conversion can be expected? If you were unable to determine the reaction
order and the specific reaction rate constant in part (b), assume k � 1 min�1 and carry out the
calculation!

vR

v0

v0

vb

Figure Q18-1B Model system.

kCA
2 k�CA

   →   
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P18-3B The second-order liquid-phase reaction

A B � C

is to be carried out isothermally. The entering concentration of A is 1.0 mol/dm3. The specific reaction rate
is 1.0 dm3/mol�min. A number of used reactors (shown below) are available, each of which has been char-
acterized by an RTD. There are two crimson and white reactors, and three maize and blue reactors available.

(a) You have $50,000 available to spend. What is the greatest conversion you can achieve with the
available money and reactors?

(b) How would your answer to (a) change if you had an extra $75,000 available to spend?
(c) From which cities do you think the various used reactors came from?

P18-4B The elementary liquid-phase reaction

A B, k1 � 1.0 min�1

is carried out in a packed-bed reactor in which dispersion is present.
What is the conversion?

Additional information:

Porosity � 50% Reactor length � 0.1 m
Particle size � 0.1 cm Mean velocity � 1 cm/s
Kinematic viscosity � 0.01 cm2/s Bed fluidicity � 7.3

(Ans.: X = 0.15)

P18-5A A gas-phase reaction is being carried out in a 5-cm-diameter tubular reactor that is 2 m in length. The
velocity inside the pipe is 2 cm/s. As a very first approximation, the gas properties can be taken as
those of air (kinematic viscosity � 0.01 cm2/s), and the diffusivities of the reacting species are approx-
imately 0.005 cm2/s.
(a) How many tanks in series would you suggest to model this reactor?
(b) If the second-order reaction A � B C � D is carried out for the case of equimolar feed,

and with CA0 � 0.01 mol/dm3, what conversion can be expected at a temperature for which k �
25 dm3/mol�s?

(c) How would your answers to parts (a) and (b) change if the fluid velocity was reduced to 0.1 cm/s?
Increased to 1 m/s?

(d) How would your answers to parts (a) and (b) change if the superficial velocity was 4 cm/s through
a packed bed of 0.2-cm-diameter spheres?

(e) How would your answers to parts (a) to (d) change if the fluid was a liquid with properties similar
to water instead of a gas, and the diffusivity was 5 � 10�6 cm2/s?

P18-6A Use the data in Example 16-2 to make the following determinations. (The volumetric feed rate to this
reactor was 60 dm3/min.)
(a) Calculate the Peclet numbers for both open and closed systems.
(b) For an open system, determine the space time τ and then calculate the % dead volume in a reactor

for which the manufacturer’s specifications give a volume of 420 dm3.

Reactor �(min) (min) Cost

Maize and blue 2 2 $25,000
Green and white 4 4 50,000
Scarlet and gray 3.05 4 50,000
Orange and blue 2.31 4 50,000
Purple and white 5.17 4 50,000
Silver and black 2.5 4 50,000
Crimson and white 2.5 2 25,000

   →  

t

   →   k
 

1

   →   
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(c) Using the dispersion and tanks-in-series models, calculate the conversion for a closed vessel for
the first-order isomerization

A B

with k � 0.18 min�1.
(d) Compare your results in part (c) with the conversion calculated from the tanks-in-series model, a

PFR, and a CSTR.
P18-7A A tubular reactor has been sized to obtain 98% conversion and to process 0.03 m3/s. The reaction is a

first-order irreversible isomerization. The reactor is 3 m long, with a cross-sectional area of 25 dm2.
After being built, a pulse tracer test on the reactor gave the following data: tm � 10 s and �2 � 65 s2.
What conversion can be expected in the real reactor?

P18-8B The following E(t) curve was obtained from a tracer test on a reactor.

E(t) = 0.25t 0 < t < 2
= 1 – 0.25t 2 < t < 4
= 0 t > 4

t in minutes, and E(t) in min–1.

The conversion predicted by the tanks-in-series model for the isothermal elementary reaction

A B

was 50% at 300 K.
(a) If the temperature is to be raised 10˚C (E = 25,000 cal/mol) and the reaction carried out isother-

mally, what will be the conversion predicted by the maximum mixedness model? The T-I-S
model?

(b) The elementary reactions

were carried out isothermally at 300 K in the same reactor. What is the concentration of B in the
exit stream predicted by the maximum mixedness model?

(c) For the multiple reactions given in part (b), what is the conversion of A predicted by the disper-
sion model in an isothermal closed-closed system?

P18-9B Revisit Problem P16-3C where the RTD function is a hemicircle. What is the conversion predicted by
(a) The tanks-in-series model? (Ans.: XT-I-S = 0.447)
(b) The dispersion model? (Ans.: XDispersion = 0.41)

P18-10B Revisit Problem P16-5B.
(a) What combination of ideal reactors would you use to model the RTD?
(b) What are the model parameters?
(c) What is the conversion predicted for your model?
(d) What is the conversion predicted by Xmm, Xseg, XT-I-S, and XDispersion?

P18-11B Revisit Problem P16-6B.
(a) What conversion is predicted by the tanks-in-series model?
(b) What is the Peclet number?
(c) What conversion is predicted by the dispersion model?

P18-12D Let’s continue Problem P16-11C.
(a) What would be the conversion for a second-order reaction with kCA0 � 0.1 min�1 and CA0 �

1 mol/dm3 using the segregation model?
(b) What would be the conversion for a second-order reaction with kCA0 � 0.1 min�1 and CA0 �

1 mol/dm3 using the maximum mixedness model?

   →  

   →  
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k

 
1  B   →   

k
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3  D

k1 k2 k3 0.1 min 1�  at 300 K, CA0 1 mol/dm3
�� � �
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(c) If the reactor is modeled as tanks in series, how many tanks are needed to represent this reactor?
What is the conversion for a first-order reaction with k � 0.1 min�1?

(d) If the reactor is modeled by a dispersion model, what are the Peclet numbers for an open system
and for a closed system? What is the conversion for a first-order reaction with k � 0.1 min�1 for
each case?

(e) Use the dispersion model to estimate the conversion for a second-order reaction with k � 0.1
dm3/mol�s and CA0 � 1 mol/dm3.

(f) It is suspected that the reactor might be behaving as shown in Figure P18-12B, with perhaps (?)
V1 � V2. What is the “backflow” from the second to the first vessel, as a multiple of ?

(g) If the model above is correct, what would be the conversion for a second-order reaction with k �
0.1 dm3/mol�min if CA0 � 1.0 mol/dm3?

(h) Prepare a table comparing the conversion predicted by each of the models described above.
P18-13B A second-order reaction is to be carried out in a real reactor that gives the following outlet concentra-

tion for a step input:
For 0 ≤ t < 10 min, then CT = 10 (1�e�.1t)
For 10 min ≤ t, then CT = 5�10 (1�e�.1t)

(a) What model do you propose and what are your model parameters, α and β? 
(b) What conversion can be expected in the real reactor?
(c) How would your model change and conversion change if your outlet tracer concentration was as
follows?

For t ≤ 10 min, then CT = 0 
For t ≥ 10 min, then CT = 5�10 (1�e–0.2(t�10))

v0 = 1 dm3/min, k = 0.1 dm3/mol ⋅ min, CA0 = 1.25 mol/dm3

P18-14B Suggest combinations of ideal reactors to model the real reactors given in problem P16-2B(b) for either
E(θ),E(t), F(θ), F(t), or (1 – F(θ)).

P18-15B The F-curves for two tubular reactors are shown in Figure P18-15B for a closed–closed system.

(a) Which curve has the higher Peclet number? Explain.
(b) Which curve has the higher dispersion coefficient? Explain.
(c) If this F-curve is for the tanks-in-series model applied to two different reactors, which curve has

the largest number of T-I-S, (1) or (2)?
U of M, ChE528 Mid-Term Exam

v0

Figure P18-12D Proposed model system.

1

F  0.5

0
1.0 θ

1

2

Figure P18-15B F-curves.
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P18-16C Consider the following system in Figure P18-16C used to model a real reactor:

Describe how you would evaluate the parameters α and β.
(a) Draw the F- and E-curves for this system of ideal reactors used to model a real reactor using β =

0.2 and α = 0.4. Identify the numerical values of the points on the F-curve (e.g., t1) as they relate
to τ.

(b) If the reaction A → B is second order with kCA0 = 0.5 min–1, what is the conversion assuming the
space time for the real reactor is 2 min?

U of M, ChE528 Final Exam
P18-17B There is a 2-m3 reactor in storage that is to be used to carry out the liquid-phase second-order reaction

A + B C

A and B are to be fed in equimolar amounts at a volumetric rate of 1 m3/min. The entering concentra-
tion of A is 2 molar, and the specific reaction rate is 1.5 m3/kmol • min. A tracer experiment was car-
ried out and reported in terms of F as a function of time in minutes as shown in Figure P18-17B.

Suggest a two-parameter model consistent with the data; evaluate the model parameters and the
expected conversion.

U of M, ChE528 Final Exam
P18-18B The following E-curve shown in Figure P18-18B was obtained from a tracer test:

(a) What is the mean residence time?
(b) What is the Peclet number for a closed-closed system?
(c) How many tanks in series are necessary to model this nonideal reactor?

U of M, Doctoral Qualifying Exam (DQE)

Figure P18-16C Model system.

  →  

Figure P18-17B F-curve for a nonideal reactor.

Figure P18-18B E-curve for a nonideal reactor.
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P18-19B A first-order reaction is to be carried out in the reactor with k = 0.1 min–1.

Fill in the following table with the conversion predicted by each type of model/reactor.

S U P P L E M E N T A R Y  R E A D I N G

1. Excellent discussions of maximum mixedness can be found in 

DOUGLAS, J. M., “The effect of mixing on reactor design,” AIChE Symp. Ser. 48, vol. 60, p. 1 (1964).
ZWIETERING, TH. N., Chem. Eng. Sci., 11, 1 (1959).

2. Modeling real reactors with a combination of ideal reactors is discussed together with axial dispersion in

LEVENSPIEL, O., Chemical Reaction Engineering, 3rd ed. New York: Wiley, 1999.
WEN, C. Y., and L. T. FAN, Models for Flow Systems and Chemical Reactors. New York: Marcel Dekker,

1975.

3. Mixing and its effects on chemical reactor design have been receiving increasingly sophisticated treatment.
See, for example:

BISCHOFF, K. B., “Mixing and contacting in chemical reactors,” Ind. Eng. Chem., 58 (11), 18 (1966).
NAUMAN, E. B., “Residence time distributions and micromixing,” Chem. Eng. Commun., 8, 53 (1981).
NAUMAN, E. B., and B. A. BUFFHAM, Mixing in Continuous Flow Systems. New York: Wiley, 1983.

4. See also

DUDUKOVIC, M., and R. FELDER, in CHEMI Modules on Chemical Reaction Engineering, vol. 4, ed. B.
Crynes and H. S. Fogler. New York: AIChE, 1985.

5. Dispersion. A discussion of the boundary conditions for closed-closed, open-open, closed-open, and
open-closed vessels can be found in

ARIS, R., Chem. Eng. Sci., 9, 266 (1959).
LEVENSPIEL, O., and K. B. BISCHOFF, Adv. in Chem. Eng., 4, 95 (1963).
NAUMAN, E. B., Chem. Eng. Commun., 8, 53 (1981).

6. Now that you have finished this book, suggestions on what to do with the book can be posted on the kiosk
in downtown Riça, Jofostan.

TABLE P18-19B. COMPARISONS OF CONVERSION PREDICTED BY VARIOUS MODELS

Ideal PFR Ideal CSTR

Ideal
Laminar- 

Flow Reactor Segregation
Maximum 
Mixedness Dispersion

Tanks in 
Series

2010
t (min)

E(t)
(min–1)

Figure P18-19B Reactor E-curve.
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This is not the end.
It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.

Winston Churchill
November 10, 1942
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